
Translated version of Arduino蓝牙多功能

车使用手册.htm

 Arduino Bluetooth utility vehicle manual

<!--[if !vml]--> <!--[endif]-->

 One. Brief introduction

 ARDUINO Bluetooth utility vehicle is a single-chip learning application development system to
arduino microcontroller family atmega-328 core. Complete the hunt, obstacle avoidance, infrared
remote control and Bluetooth remote control functions. Package contains a number of
interesting programs, and Expansion external circuit module, thereby increasing the car's
functionality. designed to allow users in learning ARDUINO microcontroller can from boring
theoretical knowledge, the ability to acquire SCM system developed in the play.

 Two. Parameters:

 A motor parameters: Voltage Range: 6-9V, reduction ratio: 1 to 48

 2 control motor selection L298N driver module, microcontroller real isolation.
 3 Three groups hunt module detects black and white lines, higher accuracy, can also be used
with anti-drop control.
 4 Infrared remote communication module, consisting of the smart car remote control system.
 5 ultrasonic modules, car obstacle avoidance system.
 5 Bluetooth wireless module can be paired Bluetooth phone remote control robot.
 6 can access the external voltage 7 ~ 12V. And can be equipped with a variety of sensor
modules to achieve a variety of functions, depending on your imagination.

 Three. Experimental Course Introduction

 1. L298N motor driver board applications
 2. Smart car tracking
 3. Ultrasonic obstacle avoidance Smart Car
 4. Infrared remote control Smart Car
 5. Arduino Bluetooth remote control programmable smart car
 6. Four and one (obstacle avoidance hunt infrared remote Bluetooth remote) multifunction
program

 Four. List

 1 gear motor 4
 2 high-quality tires 4
 3 motor fixing member 4
 4.100 * 213 * 5MM Plexiglass plate 1
 5.100 * 213 * 5MM Plexiglass plate 1
 6.L298N motor driver board 1
 7.ARDUINO UNO328 control panel 1

 8.ARDUINO sensor expansion board V5 1 个
 9 PTZ 1
 10. Servo 1
 11 Ultrasonic Module 1
 12 Three groups hunt module
 13 IR receiver sensor
 14 MCU remote control
 16.18650 battery box a
 Section 17.18650 battery 2
 18.18650 charger 1
 19 Bluetooth module 1
 20 DuPont line 30
 21.1 m A long USB cable
 22. Pillars 35MM Long 6 20MM 3 6MM 6
 23.3MM Several screw nut

 V. head servo installation diagram

<!--[if !vml]--> <!--[endif]-->
Install for ultrasonic, take out the cross, and cut the long legs

<!--[if !vml]--> <!--[endif]-->

<!--[if !vml]-->
<!--[endif]--> fix it below the rotation stage

<!--[if !vml]-->
<!--[endif]-->

<!--[if !vml]-->
<!--[endif]--> install the servo motor

<!--[if !vml]--> <!--[endif]-->

<!--[if !vml]-->
<!--[endif]-->

<!--[if !vml]--> <!--[endif]-->

<!--[if !vml]-->
<!--[endif]-->

<!--[if !vml]-->
<!--[endif]--> install the ultrasonic senser

<!--[if !vml]-->
<!--[endif]-->

<!--[if !vml]--> <!--[endif]-->OK! Enjoy Jim

 Six. Arduino microcontroller use

 1 Introduction

<!--[if !vml]--> <!--[endif]-->
 Arduino is an open-source from the Italian project hardware platform that includes a with a
simple I / O functions of a circuit board and a set of application development environment
software. Arduino can be used to develop interactive products, such as it can be read by a large
number of switches and sensor signals, and can control lights, motors, and other kinds of physical
devices; Arduino can also develop peripheral devices connected to the PC, can and software on
the PC to communicate runtime. Arduino hardware circuit board can be self-welding assembly
can also be purchased already assembled modules, and program development environment
software you can download and use for free from the Internet.

<!--[if !vml]--> <!--[endif]-->
 We look at how to define the Arduino team:
 Arduino is an open-source electronics prototyping platform with a flexible, easy to use hardware

and software. Arduino is designed for designers, arts and crafts workers, hobbyists and people
interested in the development of interactive installations or interactive development
environment designed for.
 Arduino can receive input signals from various sensors to detect the operating environment,
and by controlling the light source, and the other drive motor to affect their surroundings.
Microcontroller Arduino board programming using programming language (based on Wiring) and
the Arduino development environment (based in Processing). Arduino can run independently,
can also run on a computer with software (for example, Flash, Processing, MaxMSP) to
communicate.
 Arduino hardware board can self-welding assembly can also be purchased already assembled,
the software is free to download from the Arduino website. You can get an open source license
hardware reference design (CAD file), and the freedom to modify it to suit your needs.
 Arduino is still a little fuzzy definitions, which is the Arduino advantage. Arduino is connected
to a variety of tasks that people adhesives. Arduino give the most precise definition is best
described using some examples.
 You want coffee brewed, the coffee pot on the issue of "creak" sound to remind you with
something?
 If you want to have a new mail message, the phone will alert notifies you do?
 Want a glittering pile toy?
 Want to have a voice and drinks distribution function Energy X Professor steam punk style
wheelchair?
 Want a keyboard shortcut can be carried out experimental tests buzzer it?
 Want for your son made a "Metroid" arm cannon right?
 Homemade want a heart rate monitor, record each time the cyclists deposited into a memory
card?
 Thought made a drawing can be on the ground, the robot can ride in the snow right?

<!--[if !vml]--> <!--[endif]-->

<!--[if !vml]--> <!--[endif]-->
 Arduino think that you can achieve.
 For understand electronics or microcontrollers people, this sounds very cool, very interesting,
and will want to join this club. This is something kids want to make, you can even fool some of
their knowledge in this process school. These projects generated in the science fiction story,
these small devices appear in the log. Its common is that these are fantasies, some of the stuff

of dreams. But now, these wonderful ideas really are achieved in a timely manner you are not
an engineer, but also completely homemade.
 This is a big deal, because engineers are often designed for other engineers to develop a
platform, rather than as an artist, freak, or young children in order to share an idea and simply
connect things together. Arduino team than by the "hard core" of electronic engineers, but by
designers, teachers, artists, and I know all the "technical hippies" component (hippies here is a
compliment, I hope I did not offend them). Arduino's main base in Italy, every year I see people
trying to find articles about Italy "own Google", and in fact they already have, and that is Arduino,
they have yet to realize it.
 See examples of Arduino projects, you will find these electronics makers are "what is" more
interested in, rather than production methods. These enthusiasts often expressed Arduino
Arduino does not teach basic electronics, "Bah, could this be true of electronic products ah," they
said, "too easy!" Yes, indeed. If you are an artist or designer, not using Arduino in case, you
want a light emitting diode flashes, or motor rotation, then I wish you good luck. Of course, if
you are willing to spend money and take your electronics technology heavy textbooks to show
something, which is not a bad idea. But for there to other people, but they want to use
light-emitting diode to decorate Burning Man clothing only.
 For some traditional microcontroller Arduino community is how to treat this issue, I think the
best example is the AVR Freaks, the official website focuses on AVR processor (also used Arduino).
You might want to AVR Freaks community favorite Arduino, because Arduino AVR
microcontrollers can be brought to the public. However, many people do not like all of the site's
wacky contraption made of these non-engineers because they will destroy their hierarchy. To
quote my favorite (and I hope these words printed on the T-shirt).
 "Arduino programming language that children can understand, once hooked" - ArnoldB,
AVRfreaks website
 In fact, this was the wrong attitude to promote the Arduino fans to create their own
communities, helping to build an eclectic Arduino, rather high above the community.
 Arduino is simple, but not too simple. It revolves around these ideas to create that students
use Arduino to achieve the purpose of: receiving sensor signals, to get some code, and then use
these signals and codes. Perhaps not even write code, you can begin after that they cut and
paste code. Arduino is a thermal adhesive, rather than precise welding. So no one will be cut
off one hand, there will not be labs were destroyed. One Arduino team members will teach arts
and crafts people and designers how to use. Every day, Arduino constantly establish and
improve learning, professors, and shared code project. The arts and crafts people and designers
to use and modify the Processing language systems are Macs. (Processing is Arduino's Big
Brother)
 Speaking here, Arduino is like a passion, no boundaries, artistic atmosphere of the rally. This is
the Arduino become a "do it yourself" successful model of reason? Not only that, we come to
understand more specific information.
 Library - simple tasks, complex tasks easy to get
 A large package library is used to perform complex tasks, such as writing to the SD memory card,
write LCD driver, parsing GPS. There are also some libraries used to do simple things, such as
turning the pin or key debounce. If there are 10 chips, we have to install the UART code written
10 times, and frankly, it annoying. If you call Serial.begin (9600) function to handle the register
data, then it is much easier.
 Lightweight, run directly on the underlying hardware On
 Use a certified, easy to understand compilers (We can even say that is the AVR avr-gcc compiler
default or standard), the code can be run directly on the underlying hardware On. NET
languages compile manner and BASIC language is different. The compiler runs fast, small size,
light weight, and you can use HEX (hexadecimal) file for the bulk of the new chip to be
programmed.
 Sensor
 Arduino really take off because it enables analog input into digital input, in other words, you can
light, temperature, sound, or any already on the market of low-cost sensor signal input, Arduino

can be identified. For digital sensors, Arduino supports SPI (high-speed synchronous serial port)
and I 2C The bus. This feature covers 99% of the sensors on the market. Other
development platform is not easy to achieve - think if a Beagleboard (great product) and Arduino
tied together, just to get the data of the sensor, it is really strange!

<!--[if !vml]-->
<!--[endif]-->
 Simple, but not too simple
 Traditional development boards are often too complex, there are many accessories, such as LCD
screen, buttons, LEDs, 7-segment digital tube and so on. Development board shows all its
functions. The number of functional Arduino board shows the absolute minimum, if you want
to expand the functions, simply increase the Shield (shield). Arduino Shield There are hundreds,
from LCD to wireless Internet technology, but to increase the number of Shield set by the user.
Expansion Shield features are also easy to make extensions Shield features people will stimulate
commerce.
 Non-chip maker manufacture
 Arduino development board is not designed by the chip manufacturer. Why emphasize this
point? Because the chip maker in order to highlight their products unique, they often add some
strange things. The Arduino emphasize commonalities rather than differences between the
microcontroller. This means that the Arduino is a great platform for beginners, as long as the
Arduino board can do things that you can do on any other microcontroller. The basic features
will accompany you for a long time.
 2 Arduino-driven installation and programming procedures
 First, download the Arduino development software, web address:
http://arduino.cc/en/Main/Software
 Downloaded file is a arduino-0023.zip compressed folder, extract it to your hard drive.
 When the Arduino UNO connected to Windows via USB cable, you will be prompted new USB
device named "Arduino UNO" is found,

 <!--[if !vml]--> <!--[endif]-->
 Then Windows will guide us into the "Found New Hardware Wizard" window, select one of the
"No, not" option, click "Next" button:

http://translate.google.com/translate?hl=en&prev=_t&sl=zh-CN&tl=en&u=http://arduino.cc/en/Main/Software

<!--[if !vml]-->
<!--[endif]-->
 The next step you need to install the necessary drivers Arduino UNO, select one of the "Install
from a list of specific location (Advanced)" option, click "Next" button:

<!--[if !vml]-->
<!--[endif]-->
 Arduino UNO USB drive on drivers directory Arduino 0021 installation directory, we need to
specify the directory for Windows installation directory-driven search:

<!--[if !vml]-->
<!--[endif]-->
 Click the "Next" button, Windows will begin to find and install Arduino UNO USB drivers:

<!--[if !vml]-->
<!--[endif]-->
 If everything goes well, we will see the following screen success:

<!--[if !vml]-->
<!--[endif]-->
 Arduino UNO after the USB driver installation is successful, we can find the appropriate Arduino
UNO serial ports in Windows Device Manager:

<!--[if !vml]--> <!--[endif]-->

 The following program demonstrates the first programmer, light "L" lights
 In Arduino-0023 programming interface, click [Tools], move the mouse to the drop-down menu
[Board] option in the pop-up submenus seen continuing, [Arduino UNO] if there is a black spot in
front of, if not, then the point Click [Arduino UNO] this option.

<!--[if !vml]--><!--[endif]-->

 Down to select
the correct COM

connection.
Just remember
when installing

the hardware requirements of your record that (COMX) What's the value of X? Necessary to
use here. If Arduino UNO port just installed is 21, so the mouse click 21.

<!--[if !vml]-->
<!--[endif]-->

 Let come to import a "L" flashing lights sample program, the left mouse button [File]
 Inside the pop-up menu, move the mouse to pull down [Examples], the menu extend to the
right to [1.Basics]
 Move the mouse to [1.Basics] After the menu continues to expand, find the [Blink], left-click
[Blink]

<!--[if !vml]-->
<!--[endif]-->
 Click End [Blink] will pop up a Arduino programming interface

<!--[if !vml]-->
<!--[endif]-->
<!--[if !vml]--><!--[endif]--> Direct point left a red arrow icon within the meaning of, you will

find the Arduino UNO motherboards have two yellow light will flash for a
while, along with two wild yellow flashing lights off. Text prompt box

appears below the program,
 L lights on the motherboard with 1 second blinking.
 So congratulations, you first program has been a success! ! !

 VII. Experimental Details

 1.L298N motor driver board applications

 L298N bridge driver board Please refer to (L298N dual H-bridge DC motor driver board manual),
here is not to say, but there are some users do not know how to control two DC motors, here to
do some detail.

<!--[if !vml]--> <!--[endif]-->

 First VMS driver to take power section can be accessed by an external power supply, usually
around 9V more appropriate, logical part of the board can take power, that the terminal may be
left unconnected, but also access to +5 V-+7 V. About two rows of three terminal pins are used
to control two DC motors. EA, EB access ArduinoPWM interfaces for motor control, I1, I2, I3, I4
interfaces are used to control two DC motors forward, backward, steering and brakes, only digital
interface to access Arduino.
 This preparatory work completed, you can write a program, and here I put the car straight,
backward, turn left, turn right, brake functions are written into the program for your reference.
 Procedures are as follows:
 int pinI1 = 8 ;/ / define interfaces I1
 int pinI2 = 9 ;/ / define I2 interfaces
 int speedpin = 11 ;/ / define EA (PWM control) Interface
 int pinI3 = 6 ;/ / define I3 Interface
 int pinI4 = 7 ;/ / define I4 Interface
 int speedpin1 = 10 ;/ / define EB (PWM control) Interface
 void setup ()
 {
 pinMode (pinI1, OUTPUT);
 pinMode (pinI2, OUTPUT);
 pinMode (speedpin, OUTPUT);
 pinMode (pinI3, OUTPUT);
 pinMode (pinI4, OUTPUT);
 pinMode (speedpin1, OUTPUT);
 }
 void loop ()
 {
 / / Straight
 analogWrite (speedpin, 100) ;/ / set the speed of the input analog value
 analogWrite (speedpin1, 100);
 digitalWrite (pinI4, LOW) ;/ / make DC motor (right) turn counterclockwise
 digitalWrite (pinI3, HIGH);

 digitalWrite (pinI1, LOW) ;/ / make DC motor (left) clockwise
 digitalWrite (pinI2, HIGH);
 delay (2000);
 / / Back
 analogWrite (speedpin, 100) ;/ / set the speed of the input analog value
 analogWrite (speedpin1, 100);
 digitalWrite (pinI4, HIGH) ;/ / make DC motor (right) clockwise
 digitalWrite (pinI3, LOW);
 digitalWrite (pinI1, HIGH) ;/ / make DC motor (left) turn counterclockwise
 digitalWrite (pinI2, LOW);
 delay (2000);
 / / Left
 analogWrite (speedpin, 60) ;/ / set the speed of the input analog value
 analogWrite (speedpin1, 60);
 digitalWrite (pinI4, LOW) ;/ / make DC motor (right) turn counterclockwise
 digitalWrite (pinI3, HIGH);
 digitalWrite (pinI1, HIGH) ;/ / make DC motor (left) turn counterclockwise
 digitalWrite (pinI2, LOW);
 delay (2000);
 / / Right
 analogWrite (speedpin, 60) ;/ / set the speed of the input analog value
 analogWrite (speedpin1, 60);
 digitalWrite (pinI4, HIGH) ;/ / make DC motor (right) clockwise
 digitalWrite (pinI3, LOW);
 digitalWrite (pinI1, LOW) ;/ / make DC motor (left) clockwise
 digitalWrite (pinI2, HIGH);
 delay (2000);
 / / Brake
 digitalWrite (pinI4, HIGH) ;/ / make DC motor (right) brake
 digitalWrite (pinI3, HIGH);
 digitalWrite (pinI1, HIGH) ;/ / make DC motor (left) brake
 digitalWrite (pinI2, HIGH);
 delay (2000);
 }
 Note: The program I used to turn left and turn right just turn in a controlled manner, otherwise
not list them, you can try it yourself.

 2 Smart car tracking

<!--[if !vml]--> <!--[endif]-->
 Tracking module principle: TCRT5000 infrared tube works is the use of infrared reflectivity of
color is not the same, the intensity of the reflected signal is converted into a current signal.
Black and white tracing module detects a black high efficient white is detected active low,
detection height of 0 - 3cm .
 Note: You can use the circuit potentiometer knob to adjust the sensitivity of the black and white
tracing.
 TCRT5000 infrared tube in robot design, is widely used in industrial manufacturing. Available
in black and white tracing TCRT5000 making robots, industrial counting sensors.

<!--[if !vml]--> <!--[endif]-->
 Usage:
 1 sensor interface has three rows of pins, respectively, GND, VCC, OUT. VCC and GND for the
supply side, OUT is the signal output.
 (2) an object is detected, the low level output signal terminal; no object is detected, the
signal-side output high.

 3 main judgment signal output is 0 or 1, you can determine whether the object exists.
 Performance parameters:
 1: detection distance, testing about White 2 cm . Depending on the type of color different
from white farthest.
 2 Supply voltage:. 2.5V ~ 12V, do not exceed 12V. (Note: It is best to use a low voltage power
supply, the power supply voltage is too high sensor life becomes shorter 5V power supply is
better.)
 3. Operating current, 5V when 18 ~ 20ma. After extensive testing when the sensor hardware is
set to 18 ~ 20ma Current best performance, mainly in the anti-jamming capability.
 4 object is detected, the low level output signal terminal; no object is detected, the signal-side
output high.
 5 TTL level sensor output can be connected directly to the 3.3V or 5V microcontroller IO port.
 Black or white line detection principle
 1 Use small black light reflectance of this feature, when the plane's color is not black, the sensor
emitted infrared light reflected back by the majority. So low sensor output level 0.
 (2) When there is a flat black line, black line sensor in the party, because black reflective
capacity is weak, reflected infrared light rarely reach the action level sensor, the sensor also
outputs 1.
 (3) We just use the microcontroller to determine the output of the sensor is 0 or 1, will be able
to detect the black line.
 4 white line detection principle and the principle of detecting the black line, like the detection of
the white line, white line around the black color also relatively close, and then adjust the infrared
sensor above the adjustable resistance, reduced sensitivity has been adjusted to just The color is
not detected until the periphery, so you can detect the white line.

 Experimental procedure:

 int pin = 7 ;/ / Defines interface Arduino digital pin7
 int val ;/ / define variables
 void setup ()
 {
 pinMode (ledPin, OUTPUT) ;/ / set the digital interface output interface 7
 Serial.begin (9600) ;/ / set the serial port baud rate to 9600kbps
 }
 void loop ()
 {
 value val = digitalRead (pin) ;/ / read digital interface
 Serial.println (val) ;/ value / output digital interface
 }

 Tracking car

 Learn hunt module after we started doing a hunt of their own car
 The design is based on a simple Arduino control system automatically tracing the car, including
the trolley system configuration of hardware and software design methods. Car with Arduino
UNO as the control center, using infrared photoelectric sensors to detect trace black pavement
and road surface detection signal back to the Arduino microcontroller. Arduino microcontroller
signal collected are analyzed to determine, in a timely manner to control the drive motor to
adjust the car turned, allowing the car to automatically drive along the black track to achieve car
automatically tracing purposes.
 Based on the design of a DC motor automatically tracing the car, so the car can automatically
detect ground black track, and a black car traveling along the track. System solutions block
diagram shown in Figure 1-1.

<!--[if !vml]--> <!--[endif]-->
 Block diagram of Figure 1-1 System program

 Car tracking principle
 Here is the tracking on the trolley through the black line white floor, the floor of the black and
white lines of the different light reflection coefficients, according to the strength of the received
reflected light to determine the "road." The method is usually taken infrared detection method.
 Infrared detection method, i.e., the surface of the object using infrared different colors have
different characteristics of reflection properties in the course of driving the car constantly emit
infrared light towards the ground, the infrared diffuse reflection occurs when light encounters a
white paper floor, the reflected light is housed in a small car receiver tube receiver; If you
encounter black line is the infrared light is absorbed, small car receiver tube not receive infrared
light. SCM received on whether the reflected infrared light to determine the basis of the
location of the black line and trolley walking routes. Infrared detector detects a limited
distance,
 Control System Design
 Automatic tracking car control system, consisting of the main part of the power control circuit
module, infrared detection module, motor and drive module, the control system block diagram
shown in Figure 2-1.

<!--[if !vml]-->
<!--[endif]-->
 Car tracking flowchart
 After the car into tracking mode, which began non-stop scanning probe connected with the
MCU I / O port, upon detection of an I / O port has a signal that entered judgment process, first
determine the three detectors in Which one to detect the black line.

检测（黑线）

驱动电机

软件控制

控制小车

电

源

主控芯片

UNO

L298

减速电机

黑线

光电传感器

图 2-1 控制系统的结构

框图

<!--[if !vml]--> <!--[endif]-->
 Arduino car tracking wiring diagram

图 3-1 循迹流程图

启动循迹模式

探测黑线

是否检测到

黑线

判断处理程序

向左转

Turn

_left2

向左转

Turn

_left1

向右转

Turn_

right1

向右转

Turn_

Lright2

继续前进

N

Y

<!--[if !vml]--> <!--[endif]-->
 Tracking car Arduino program:
 int MotorRight1 = 5;
 int MotorRight2 = 6;
 int MotorLeft1 = 10;
 int MotorLeft2 = 11;
 const int SensorLeft = 7; / / Left sensor input pin
 const int SensorMiddle = 4; / / The sensor input pin
 const int SensorRight = 3; / / Right sensor input pin
 int SL; / / Left sensor status
 int SM; / / The sensor status
 int SR; / / Right sensor status

 void setup ()
 {
 Serial.begin (9600);
 pinMode (MotorRight1, OUTPUT); / / Pin 8 (PWM)
 pinMode (MotorRight2, OUTPUT); / / Pin 9 (PWM)
 pinMode (MotorLeft1, OUTPUT); / / Pin 10 (PWM)
 pinMode (MotorLeft2, OUTPUT); / / Pin 11 (PWM)
 pinMode (SensorLeft, INPUT); / / define left Sensors
 pinMode (SensorMiddle, INPUT) ;/ / definition sensors
 pinMode (SensorRight, INPUT); / / definition of the right sensor
 }

 void loop ()
 {
 SL = digitalRead (SensorLeft);
 SM = digitalRead (SensorMiddle);
 SR = digitalRead (SensorRight);

 if (SM == HIGH) / / in sensors in black areas
 {
 if (SL == LOW & SR == HIGH) / / left and right black white, turn left
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 analogWrite (MotorLeft1, 0);
 analogWrite (MotorLeft2, 80);
 }
 else if (SR == LOW & SL == HIGH) / / left and right black white, turn right
 {
 analogWrite (MotorRight1, 0) ;/ / right turn
 analogWrite (MotorRight2, 80);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 }
 else / / Both sides white, straight
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 analogWrite (MotorLeft1, 200);
 analogWrite (MotorLeft2, 200);
 analogWrite (MotorRight1, 200);
 analogWrite (MotorRight2, 200);
 }
 }
 else / / the sensors in the white area
 {
 if (SL == LOW & SR == HIGH) / / left and right black white, fast turn left
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 }
 else if (SR == LOW & SL == HIGH) / / left and right black white, quick right turn
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 }
 else / / are white, stop
 {
 digitalWrite (MotorRight1, HIGH);

 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, HIGH);
 digitalWrite (MotorLeft2, LOW);;
 }}}

 3 ultrasonic obstacle avoidance Smart Car

<!--[if !vml]--> <!--[endif]-->
 Ultrasonic Intelligent obstacle avoidance achieve convenient computing simple, easy to do
real-time control, and measurement accuracy can meet the practical requirements, it became
common obstacle avoidance. Ultrasonic use reference (Arduino Ultrasonic Ranging
instructions).
 Ultrasonic intelligent wiring diagram;

<!--[if !vml]--> <!--[endif]-->
 A: Motor connection
 L298N motor a pick of MOTOA
 The two then L298N motor MOTOB
 Two: L298N supply deal
 5 with 6 way power to the battery box to take L298N motor drive module power, the other way
to ARDUINO board power supply,
 L298N motor drive module to the power supply + pole to L298N of VMS interface power -
L298N the GND connection interfaces, +5 V Interface L298N vent panel is not connected.

<!--[if !vml]--> <!--[endif]-->

 Three: the motor and steering enabled (with the program)
 int pinLB = 6; / / After defining the 6 pin left, then to the foot force plate PWM6
 int pinLF = 9; / / Define the 9 pin left, then to the foot force plate PWM9
 int pinRB = 10; / / Define pin 10 right rear, then to force the foot plate PWM10
 int pinRF = 11; / / Define the 11-pin front right, then to the foot force plate PWM11

 Four: Servo connections

 myservo.attach (5); / / Define servo motor output section 5 pin (PWM)

 Five: ultrasonic sensor connection
 Ultrasonic sensors have four legs
 VCC +5 V connection
 TRIQ signal input
 ECHO signal output
 GND Ground

<!--[if !vml]--> <!--[endif]-->
 int inputPin = A0; / / Define pin ultrasonic signal reception
 int outputPin = A1; / / Define pin ultrasonic signal transmitter

 Ultrasonic Smart car obstacle avoidance procedures (ARDUINO)
 L = Left
 R = Right
 F = front
 B = after
 * /
 # Include <Servo.h>
 int pinLB = 6; / / Define pin left after 6
 int pinLF = 9; / / Define the 9-pin front left

 int pinRB = 10; / 10 pin definitions right rear /
 int pinRF = 11; / / Define the 11-pin front right

 int inputPin = A0; / / Define pin ultrasonic signal reception
 int outputPin = A1; / / Define pin ultrasonic signal transmitter

 int Fspeedd = 0; / /-Speed
 int Rspeedd = 0; / / Right speed
 int Lspeedd = 0; / / Left-speed
 int directionn = 0; / / Front Left = 8 after = 2 = 4 Right = 6
 Servo myservo; / / Set myservo
 int delay_time = 250; / / settling time after steering servo motors

 int Fgo = 8; / / Forward
 int Rgo = 6; / / Right
 int Lgo = 4; / / Left
 int Bgo = 2; / / Reverse

 void setup ()
 {
 Serial.begin (9600); / / Define motor output pin
 pinMode (pinLB, OUTPUT); / / pin 8 (PWM)
 pinMode (pinLF, OUTPUT); / / pin 9 (PWM)
 pinMode (pinRB, OUTPUT); / / pin 10 (PWM)
 pinMode (pinRF, OUTPUT); / / pin 11 (PWM)

 pinMode (inputPin, INPUT); / / Define ultrasound input pin
 pinMode (outputPin, OUTPUT); / / Define ultrasonic output pin

 myservo.attach (5); / / Define servo motor output section 5 pin (PWM)
 }
 void advance (int a) / / Forward
 {
 digitalWrite (pinRB, LOW); / / The motor (rear right) action
 digitalWrite (pinRF, HIGH);
 digitalWrite (pinLB, LOW); / / The motor (left rear) action
 digitalWrite (pinLF, HIGH);
 delay (a * 100);
 }

 void right (int b) / / Turn right (single wheel)
 {
 digitalWrite (pinRB, LOW); / / The motor (rear right) action
 digitalWrite (pinRF, HIGH);
 digitalWrite (pinLB, HIGH);
 digitalWrite (pinLF, HIGH);
 delay (b * 100);
 }
 void left (int c) / / Turn left (single wheel)
 {
 digitalWrite (pinRB, HIGH);
 digitalWrite (pinRF, HIGH);
 digitalWrite (pinLB, LOW); / / The motor (left rear) action
 digitalWrite (pinLF, HIGH);
 delay (c * 100);
 }
 void turnR (int d) / / Turn right (wheel)
 {
 digitalWrite (pinRB, LOW); / / The motor (rear right) action

 digitalWrite (pinRF, HIGH);
 digitalWrite (pinLB, HIGH);
 digitalWrite (pinLF, LOW); / / The motor (front left) action
 delay (d * 100);
 }
 void turnL (int e) / / Turn left (wheel)
 {
 digitalWrite (pinRB, HIGH);
 digitalWrite (pinRF, LOW); / / The motor (front right) action
 digitalWrite (pinLB, LOW); / / The motor (left rear) action
 digitalWrite (pinLF, HIGH);
 delay (e * 100);
 }
 void stopp (int f) / / Stop
 {
 digitalWrite (pinRB, HIGH);
 digitalWrite (pinRF, HIGH);
 digitalWrite (pinLB, HIGH);
 digitalWrite (pinLF, HIGH);
 delay (f * 100);
 }
 void back (int g) / / Check out
 {

 digitalWrite (pinRB, HIGH); / / The motor (rear right) action
 digitalWrite (pinRF, LOW);
 digitalWrite (pinLB, HIGH); / / The motor (left rear) action
 digitalWrite (pinLF, LOW);
 delay (g * 100);
 }

 void detection () / / Measure three angles (0.90.179)
 {
 int delay_time = 250; Settling time / / servo motor after turning
 ask_pin_F (); / / Read from front

 if (Fspeedd <10) / / If the distance is less than 10 cm in front of
 {
 stopp (1); / / Clear the output data
 back (2); / / Check out 0.2 seconds
 }

 if (Fspeedd <25) / / If the distance is less than 25 cm in front of
 {
 stopp (1); / / Clear the output data
 ask_pin_L (); / / Read from left
 delay (delay_time); / / Wait for a stable servo motor
 ask_pin_R (); / / Read from the right
 delay (delay_time); / / Wait for a stable servo motor

 if (Lspeedd> Rspeedd) / / If the distance is greater than the right from the left
 {
 directionn = Rgo; / / Right away
 }

 if (Lspeedd <= Rspeedd) / / If the left is less than or equal to the distance from
the right
 {
 directionn = Lgo; / / Turn Left
 }

 if (Lspeedd <10 && Rspeedd <10) / / If the distance to the left and right are less
than 10 cm distance
 {
 directionn = Bgo; / / To go after
 }
 }
 else / / Add as front not less than (greater than) 25 cm
 {
 directionn = Fgo; / / Move forward
 }

 }
 void ask_pin_F () / / Measure the distance from the front
 {
 myservo.write (90);
 digitalWrite (outputPin, LOW); / / Let ultrasonic transmitter low voltage 2 μ s
 delayMicroseconds (2);
 digitalWrite (outputPin, HIGH); / / Let ultrasonic transmitter high voltage 10 μ s,
where at least 10 μ s
 delayMicroseconds (10);
 digitalWrite (outputPin, LOW); / / Maintain low voltage ultrasonic transmitter
 float Fdistance = pulseIn (inputPin, HIGH); / / Read worse time difference
 Fdistance = Fdistance/5.8/10; / / Time to turn to the distance (unit: cm)
 Serial.print ("F distance:"); / / Output distance (unit: cm)
 Serial.println (Fdistance); / / Display the distance
 Fspeedd = Fdistance; / / Read into the distance Fspeedd (former
speed)
 }
 void ask_pin_L () / / Measure the distance from the left
 {
 myservo.write (5);
 delay (delay_time);
 digitalWrite (outputPin, LOW); / / Let ultrasonic transmitter low voltage 2 μ s
 delayMicroseconds (2);
 digitalWrite (outputPin, HIGH); / / Let ultrasonic transmitter high voltage 10 μ s,
where at least 10 μ s
 delayMicroseconds (10);
 digitalWrite (outputPin, LOW); / / Maintain low voltage ultrasonic transmitter
 float Ldistance = pulseIn (inputPin, HIGH); / / Read worse time difference
 Ldistance = Ldistance/5.8/10; / / Time to turn to the distance (unit: cm)
 Serial.print ("L distance:"); / / Output distance (unit: cm)
 Serial.println (Ldistance); / / Display the distance
 Lspeedd = Ldistance; / / Read into the distance Lspeedd (left-speed)
 }
 void ask_pin_R () / / Measure the distance from the right
 {
 myservo.write (177);

 delay (delay_time);
 digitalWrite (outputPin, LOW); / / Let ultrasonic transmitter low voltage 2 μ s
 delayMicroseconds (2);
 digitalWrite (outputPin, HIGH); / / Let ultrasonic transmitter high voltage 10 μ s,
where at least 10 μ s
 delayMicroseconds (10);
 digitalWrite (outputPin, LOW); / / Maintain low voltage ultrasonic transmitter
 float Rdistance = pulseIn (inputPin, HIGH); / / Read worse time difference
 Rdistance = Rdistance/5.8/10; / / Time to turn to the distance (unit: cm)
 Serial.print ("R distance:"); / / Output distance (unit: cm)
 Serial.println (Rdistance); / / Display the distance
 Rspeedd = Rdistance; / / Will read into the distance Rspeedd
(Right-speed)
 }

 void loop ()
 {
 myservo.write (90); / / Let servo motor position ready to return to the pre-prepared
next time measurement
 detection (); / / Measure the angle and direction of judgment to where to move

 if (directionn == 2) / / If directionn (direction) = 2 (reverse)
 {
 back (8); / / Retrogression (car)
 turnL (2); / / Move slightly to the left (to prevent stuck in dead
alley)
 Serial.print ("Reverse"); / / Display direction (backwards)
 }
 if (directionn == 6) / / If directionn (direction) = 6 (right turn)
 {
 back (1);
 turnR (6); / / Right
 Serial.print ("Right"); / / Display direction (turn left)
 }
 if (directionn == 4) / / If directionn (direction) = 4 (turn left)
 {
 back (1);
 turnL (6); / / Left
 Serial.print ("Left"); / / Display direction (turn right)
 }
 if (directionn == 8) / / If directionn (direction) = 8 (forward)
 {
 advance (1); / / Normal Forward
 Serial.print ("Advance"); / / Display direction (forward)
 Serial.print (" ");
 }
 }

 4 infrared remote intelligent vehicle test

 Experiment before you go:
 1 first IRremote library folders into libraries directory under Arduino
 2 open IrReceive.pde measured their infrared remote control code (in the Serial Monitor can

display IRcode), then IRcode record, and then to revise their programs which can be infrared
codes.

 / *
 * IRRemote infrared remote control code test
 * Examples 1.2: Show infrared protocol type, such as NEC, Sony SIRC, Philips RC5, Philips
RC6 and other agreements
 * /
 # Include <IRremote.h> / / Function library references IRRemote

 const int irReceiverPin = 2; / / OUTPUT signals IR receiver connected to pin 2

 IRrecv irrecv (irReceiverPin); / / Define an object to receive infrared signals
IRrecv
 decode_results results; / / Decoding results will result in structural
variables in decode_results

 void setup ()
 {
 Serial.begin (9600); / / Open Serial port, the communication
speed is 9600 bps
 irrecv.enableIRIn (); / / Start infrared decoding
 }

 / / Display the type of infrared protocol
 void showIRProtocol (decode_results * results)
 {
 Serial.print ("Protocol:");

 / / Judgment infrared protocol types
 switch (results-> decode_type) {
 case NEC:
 Serial.print ("NEC");
 break;
 case SONY:
 Serial.print ("SONY");
 break;
 case RC5:
 Serial.print ("RC5");
 break;
 case RC6:
 Serial.print ("RC6");
 break;
 default:
 Serial.print ("Unknown encoding");
 }

 / / Print the infrared codes to Serial port
 Serial.print (", irCode:");
 Serial.print (results-> value, HEX); / / Infrared code
 Serial.print (", bits: ");
 Serial.println (results-> bits); / / Number of bits coded infrared
 }

 void loop ()
 {
 if (irrecv.decode (& results)) { / / Decoding is successful, you receive a set of
infrared signals
 showIRProtocol (& results); / / Display the type of infrared protocol
 irrecv.resume (); / / Continue to accept a set of infrared
signals
 }
 }

 The measured infrared key code into the program to replace the infrared part of the control

<!--[if !vml]--> <!--[endif]-->
 Infrared remote intelligent vehicle program
 / / ****** Infrared remote intelligent vehicle program *******
 # Include <IRremote.h>
 int RECV_PIN = A0;
 int pinLB = 6 ;/ / define interfaces I1
 int pinLF = 9 ;/ / define I2 interfaces
 int pinRB = 3 ;/ / define I3 Interface
 int pinRF = 5 ;/ / define I4 Interface
 / / ****** Infrared control section ********
 long advence = 0x00EF 807F ;
 long back = 0x00EFA 05F ;
 long stop = 0x00EF 906F ;
 long left = 0x00EF00FF;
 long right = 0x00EF40BF;

 IRrecv irrecv (RECV_PIN);
 decode_results results;
 void dump (decode_results * results) {
 int count = results-> rawlen;
 if (results-> decode_type == UNKNOWN)
 {
 Serial.println ("Could not decode message");
 }
 else
 {
 if (results-> decode_type == NEC)
 {
 Serial.print ("Decoded NEC:");
 }
 else if (results-> decode_type == SONY)
 {
 Serial.print ("Decoded SONY:");
 }
 else if (results-> decode_type == RC5)
 {

 Serial.print ("Decoded RC5:");
 }
 else if (results-> decode_type == RC6)
 {
 Serial.print ("Decoded RC6:");
 }
 Serial.print (results-> value, HEX);
 Serial.print ("(");
 Serial.print (results-> bits, DEC);
 Serial.println ("bits)");
 }
 Serial.print ("Raw (");
 Serial.print (count, DEC);
 Serial.print ("):");

 for (int i = 0; i <count; i + +)
 {
 if ((i% 2) == 1) {
 Serial.print (results-> rawbuf [i] * USECPERTICK, DEC);
 }
 else
 {
 Serial.print (- (int) results-> rawbuf [i] * USECPERTICK, DEC);
 }
 Serial.print ("");
 }
 Serial.println ("");
 }

 void setup ()
 {
 pinMode (RECV_PIN, INPUT);
 pinMode (pinLB, OUTPUT);
 pinMode (pinLF, OUTPUT);

 pinMode (pinRB, OUTPUT);
 pinMode (pinRF, OUTPUT);

 Serial.begin (9600);
 irrecv.enableIRIn (); / / Start the receiver
 }

 int on = 0;
 unsigned long last = millis ();

 void loop ()
 {
 if (irrecv.decode (& results))
 {
 / / If it's been at least 1/4 second since the last
 / / IR received, toggle the relay
 if (millis () - last> 250)
 {
 on = on!;

 / / digitalWrite (8, on HIGH:? LOW);
 digitalWrite (13, on HIGH:? LOW);
 dump (& results);
 }
 if (results.value == advence)
 {DigitalWrite (pinRB, LOW) ;/ / make DC motor (right) GO
 digitalWrite (pinRF, HIGH);
 digitalWrite (pinLB, LOW) ;/ / make DC motor (left) GO
 digitalWrite (pinLF, HIGH);}

 if (results.value == back)

 {DigitalWrite (pinRB, HIGH) ;/ / make DC motor (right) BACK
 digitalWrite (pinRF, LOW);}

 if (results.value == left)
 {DigitalWrite (pinRB, LOW) ;/ / make DC motor (right) STOP
 digitalWrite (pinRF, HIGH);
 digitalWrite (pinLB, HIGH) ;/ / make DC motor (left) GO
 digitalWrite (pinLF, LOW);}

 if (results.value == right)
 {DigitalWrite (pinRB, HIGH) ;/ / make DC motor (right) GO
 digitalWrite (pinRF, LOW);
 digitalWrite (pinLB, HIGH) ;/ / make DC motor (left) STOP
 digitalWrite (pinLF, HIGH);}

 if (results.value == stop)
 {
 digitalWrite (pinRB, HIGH) ;/ / make DC motor (right) STOP
 digitalWrite (pinRF, HIGH);
 digitalWrite (pinLB, HIGH) ;/ / make DC motor (left) STOP
 digitalWrite (pinLF, HIGH);

 }

 last = millis ();
 irrecv.resume (); / / Receive the next value
 }
 }

 5 Smart Car Bluetooth phone control

 Arduino via Bluetooth communication

<!--[if !vml]--> <!--[endif]--> <!--[if !vml]--> <!--[endif]--> Bluetooth - This name came from
a tenth-century Danish King Harald Blatand, Blatand meaning in the English language can be
interpreted as Bluetooth (Bluetooth).
 The so-called Bluetooth (Bluetooth) technology, in fact, is a short-range radio technology, the
use of "Bluetooth" technology that can effectively simplify PDAs, notebook computers and
communications mobile phone handsets and other mobile communications terminal equipment,
but also able to successfully These simplify the communication device and the Internet (Internet)
between them so that the modern data transmission between the communication device and

the Internet more quickly and efficiently, to broaden the wireless communication path.
 Because it is the first to deal with the Bluetooth module, today or take a small test chopper,
make Arduino and pc successfully communicate it. Let's wiring, the board +5 V connection
Bluetooth VCC, GND motherboard connector Bluetooth-GND, TX motherboard connection
Bluetooth RX, RX connected Bluetooth TX. After the success of the Bluetooth module
connected to the power supply and PC, Bluetooth module power indicator flashes green link light
is lit.
 Here's a look at the program, I let my Arduino receives input "r", the interface is pin13 LED
flash once, and then output the words keyes.
 Procedures are as follows:

 char val;
 int ledpin = 13;
 void setup ()
 {
 Serial.begin (9600);
 pinMode (ledpin, OUTPUT);
 }
 void loop ()
 {
 val = Serial.read ();
 if (val == 'r')
 {
 digitalWrite (ledpin, HIGH);
 delay ((500);
 digitalWrite (ledpin, LOW);
 delay (500);
 Serial.println ("keyes");
 }
 }

 Here we learn about the Arduino Bluetooth remote control programmable intelligent car. Can
be controlled via Bluetooth forward, backward, turn left, turn right, etc., simple keys, computer
and mobile phone two control modes. (Android mobile operating system support 2.3.7
Above. Computer must own Bluetooth)
 The first time you need to use the car phone with Bluetooth pairing (after the first pairing later
in the wireless device location would not), see the following first steps:
 1 Turn on Bluetooth Oh I remember the phone, open the Bluetooth software will alert the user
to open
 2 Then, as shown in the text prompts, connect Bluetooth devices, Bluetooth devices paired
scans Oh, otherwise you can not connect the car.
 3 matching car, the password is "1234" try it.
 Then it can flourish.
 Arduino Bluetooth remote control programmable smart car program:
 / / *******************************
 int MotorRight1 = 5;
 int MotorRight2 = 6;
 int MotorLeft1 = 10;
 int MotorLeft2 = 11;

 void setup ()
 {
 Serial.begin (9600);

 pinMode (MotorRight1, OUTPUT); / / Pin 8 (PWM)
 pinMode (MotorRight2, OUTPUT); / / Pin 9 (PWM)
 pinMode (MotorLeft1, OUTPUT); / / Pin 10 (PWM)
 pinMode (MotorLeft2, OUTPUT); / / Pin 11 (PWM)
 }

 void go () / / Forward
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);

 }

 void left () / / turn right
 {
 digitalWrite (MotorRight1, HIGH);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);

 }
 void right () / / turn left
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, HIGH);
 digitalWrite (MotorLeft2, LOW);

 }
 void stop () / / stop
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);

 }
 void back () / / Check out
 {
 digitalWrite (MotorRight1, HIGH);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, HIGH);
 digitalWrite (MotorLeft2, LOW);;

 }

 void loop ()
 {
 char val = Serial.read ();
 Serial.write (val);
 if (-1! = val) {
 if ('W' == val)

 go ();
 else if ('A' == val)
 left ();
 else if ('D' == val)
 right ();
 else if ('S' == val)
 back ();
 else if ('Q' == val)
 stop ();
 delay (500);
 }
 else
 {
 / / Stop ();
 delay (500);
 }
 }

 6 Four and one (Hunt Avoidance Infrared remote control

Bluetooth Remote Control) Multifunction program

 / / ******************************
 # Include <IRremote.h>
 # Include <Servo.h>
 / / *********************** Definition of motor pin ********************* ****
 int MotorRight1 = 5;
 int MotorRight2 = 6;
 int MotorLeft1 = 10;
 int MotorLeft2 = 11;
 int counter = 0;
 const int irReceiverPin = 2; / / OUTPUT signals IR receiver connected to pin 2

 char val;
 / / *********************** Set to detect the IRcode ****************** *******
 long IRfront = 0x00FFA25D; / / Forward code
 long IRback = 0x00FF629D; / / Check out
 long IRturnright = 0x00FFC23D; / / Right
 long IRturnleft = 0x00FF02FD; / / Left
 long IRstop = 0x00FFE21D; / / Stop
 long IRcny70 = 0x00FFA857; / / CNY70 self-propelled mode
 long IRAutorun = 0x00FF 906F ; / / Self-propelled mode ultrasound
 long IRturnsmallleft = 0x00FF22DD;
 / / ************************* Defined CNY70 pin *******************

 const int SensorLeft = 7; / / Left sensor input pin
 const int SensorMiddle = 4; / / The sensor input pin
 const int SensorRight = 3; / / Right sensor input pin
 int SL; / / Left sensor status
 int SM; / / The sensor status
 int SR; / / Right sensor status

 IRrecv irrecv (irReceiverPin); / / Define an object to receive infrared signals IRrecv
 decode_results results; / / Decoding results will result in structural variables in
decode_results
 / / ************************* Defined ultrasound pin ****************** ************
 int inputPin = 13; / / define pin ultrasonic signal receiver rx
 int outputPin = 12; / / define ultrasonic signal transmitter pin 'tx
 int Fspeedd = 0; / / in front of distance
 int Rspeedd = 0; / / the right distance
 int Lspeedd = 0; / / left distance
 int directionn = 0; / / = 8 post = 2 front left and right = 6 = 4
 Servo myservo; / / set myservo
 int delay_time = 250; / / settling time after steering servo motors
 int Fgo = 8; / / Forward
 int Rgo = 6; / / turn right
 int Lgo = 4; / / turn left
 int Bgo = 2; / / reverse
 / / ** ******************** (SETUP)
 void setup ()
 {
 Serial.begin (9600);
 pinMode (MotorRight1, OUTPUT); / / Pin 8 (PWM)
 pinMode (MotorRight2, OUTPUT); / / Pin 9 (PWM)
 pinMode (MotorLeft1, OUTPUT); / / Pin 10 (PWM)
 pinMode (MotorLeft2, OUTPUT); / / Pin 11 (PWM)
 irrecv.enableIRIn (); / / Start infrared decoding
 pinMode (SensorLeft, INPUT); / / define left Sensors
 pinMode (SensorMiddle, INPUT) ;/ / definition sensors
 pinMode (SensorRight, INPUT); / / definition of the right sensor
 digitalWrite (2, HIGH);
 pinMode (inputPin, INPUT); / / define ultrasound input pin
 pinMode (outputPin, OUTPUT); / / define ultrasonic output pin
 myservo.attach (9); / / define servo motor output section 5 pin (PWM)

 }
 / / ** ****************** (Void)
 void advance (int a) / / Forward
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 delay (a * 100);
 }
 void right (int b) / / turn right (single wheel)
 {
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 delay (b * 100);
 }
 void left (int c) / / turn left (single wheel)
 {

 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 delay (c * 100);
 }
 void turnR (int d) / / turn right (wheel)
 {
 digitalWrite (MotorRight1, HIGH);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 delay (d * 100);
 }
 void turnL (int e) / / turn left (wheel)
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, HIGH);
 digitalWrite (MotorLeft2, LOW);
 delay (e * 100);
 }
 void stopp (int f) / / Stop
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 delay (f * 100);
 }
 void back (int g) / / Check out
 {
 digitalWrite (MotorRight1, HIGH);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, HIGH);
 digitalWrite (MotorLeft2, LOW);;
 delay (g * 100);
 }
 void detection () / / measure three angles (front Left. Right)
 {
 int delay_time = 250; / / settling time after steering servo motors
 ask_pin_F (); / / read from front

 if (Fspeedd <10) / / if the distance is less than 10 cm in front of
 {
 stopp (1); / / clear the output data
 back (2); / / Check out 0.2 seconds
 }
 if (Fspeedd <25) / / if the distance is less than 25 cm in front of
 {
 stopp (1); / / clear the output data
 ask_pin_L (); / / read from left
 delay (delay_time); / / wait for stable servo motor
 ask_pin_R (); / / read the right distance

 delay (delay_time); / / wait for stable servo motor

 if (Lspeedd> Rspeedd) / / If the distance is greater than the right from the left
 {
 directionn = Lgo; / / go left
 }

 if (Lspeedd <= Rspeedd) / / if the distance is less than or equal to the left to the right
distance
 {
 directionn = Rgo; / / go right
 }

 if (Lspeedd <15 && Rspeedd <15) / / if the distance to the left and right are less than 10
cm distance
 {
 directionn = Bgo; / / to go after
 }
 }
 else / / add as greater than 25 cm in front of
 {
 directionn = Fgo; / / to move forward
 }
 }
 / / **

 void ask_pin_F () / / Measure the distance from the front
 {
 myservo.write (90);
 digitalWrite (outputPin, LOW); / / make ultrasonic transmitter low voltage 2 μ s
 delayMicroseconds (2);
 digitalWrite (outputPin, HIGH); / / make ultrasonic transmitting high voltage 10 μ s, where at
least 10 μ s
 delayMicroseconds (10);
 digitalWrite (outputPin, LOW); / / maintain low voltage ultrasonic transmitter
 float Fdistance = pulseIn (inputPin, HIGH); / / read worse time difference
 Fdistance = Fdistance/5.8/10; / / will turn to time distance (unit: cm)
 Serial.print ("F distance:"); / / output distance (unit: cm)
 Serial.println (Fdistance); / / display the distance
 Fspeedd = Fdistance; / / will enter Fspeedd (former speed) from Reading
 }
 / / **

 void ask_pin_L () / / Measure the distance from the left
 {
 myservo.write (177);
 delay (delay_time);
 digitalWrite (outputPin, LOW); / / make ultrasonic transmitter low voltage 2 μ s
 delayMicroseconds (2);
 digitalWrite (outputPin, HIGH); / / make ultrasonic transmitting high voltage 10 μ s, where at
least 10 μ s
 delayMicroseconds (10);
 digitalWrite (outputPin, LOW); / / maintain low voltage ultrasonic transmitter
 float Ldistance = pulseIn (inputPin, HIGH); / / read worse time difference

 Ldistance = Ldistance/5.8/10; / / will turn to time distance (unit: cm)
 Serial.print ("L distance:"); / / output distance (unit: cm)
 Serial.println (Ldistance); / / display the distance
 Lspeedd = Ldistance; / / will be read into the distance Lspeedd (left-speed)
 }
 / / **

 void ask_pin_R () / / Measure the distance from the right
 {
 myservo.write (5);
 delay (delay_time);
 digitalWrite (outputPin, LOW); / / make ultrasonic transmitter low voltage 2 μ s
 delayMicroseconds (2);
 digitalWrite (outputPin, HIGH); / / make ultrasonic transmitting high voltage 10 μ s, where at
least 10 μ s
 delayMicroseconds (10);
 digitalWrite (outputPin, LOW); / / maintain low voltage ultrasonic transmitter
 float Rdistance = pulseIn (inputPin, HIGH); / / read worse time difference
 Rdistance = Rdistance/5.8/10; / / will turn to time distance (unit: cm)
 Serial.print ("R distance:"); / / output distance (unit: cm)
 Serial.println (Rdistance); / / display the distance
 Rspeedd = Rdistance; / / will be read into the distance Rspeedd (Right-speed)
 }
 / / **
****************************** (LOOP)
 void loop ()
 {
 SL = digitalRead (SensorLeft);
 SM = digitalRead (SensorMiddle);
 SR = digitalRead (SensorRight);
 performCommand ();
 / / ** ***************************
normal remote mode
 if (irrecv.decode (& results))
 { / / Decoding is successful, you receive a set of infrared signals
 / *** ********************** /
 if (results.value == IRfront) / / Forward
 {
 advance (10) ;/ / forward
 }
 / *** ********************** /
 if (results.value == IRback) / / Check out
 {
 back (10) ;/ / after retirement
 }
 / *** ********************** /
 if (results.value == IRturnright) / / turn right
 {
 right (6); / / turn right
 }
 / *** ********************** /
 if (results.value == IRturnleft) / / turn left
 {
 left (6); / / turn left);

 }
 / *** ********************** /
 if (results.value == IRstop) / / Stop
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 }
 / / ** ***********************
cny70 model black self-propelled mode: LOW White:
 if (results.value == IRcny70)
 {
 while (IRcny70)
 {
 SL = digitalRead (SensorLeft);
 SM = digitalRead (SensorMiddle);
 SR = digitalRead (SensorRight);

 if (SM == HIGH) / / in sensors in black areas
 {
 if (SL == LOW & SR == HIGH) / / left and right black white, turn left
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 analogWrite (MotorLeft1, 0);
 analogWrite (MotorLeft2, 80);
 }
 else if (SR == LOW & SL == HIGH) / / left and right black white, turn right
 {
 analogWrite (MotorRight1, 0) ;/ / right turn
 analogWrite (MotorRight2, 80);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 }
 else / / Both sides white, straight
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 analogWrite (MotorLeft1, 200);
 analogWrite (MotorLeft2, 200);
 analogWrite (MotorRight1, 200);
 analogWrite (MotorRight2, 200);
 }
 }
 else / / the sensors in the white area
 {
 if (SL == LOW & SR == HIGH) / / left and right black white, fast turn left
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, LOW);

 digitalWrite (MotorLeft2, LOW);
 }
 else if (SR == LOW & SL == HIGH) / / left and right black white, quick right turn
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, HIGH);
 }
 else / / are white, stop
 {
 digitalWrite (MotorRight1, HIGH);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, HIGH);
 digitalWrite (MotorLeft2, LOW);;
 }
 }
 if (irrecv.decode (& results))
 {
 irrecv.resume ();
 Serial.println (results.value, HEX);
 if (results.value == IRstop)
 {
 digitalWrite (MotorRight1, HIGH);
 digitalWrite (MotorRight2, HIGH);
 digitalWrite (MotorLeft1, HIGH);
 digitalWrite (MotorLeft2, HIGH);
 break;
 }
 }
 }
 results.value = 0;
 }
 / / ** self-propelled mode ultrasound

 if (results.value == IRAutorun)
 {
 while (IRAutorun)
 {
 myservo.write (90); / / return to the pre-prepared so that the servo motor
position once the measure under preparation
 detection (); / / measure the angle and direction of judgment to where to move
 if (directionn == 8) / / If directionn (direction) = 8 (forward)
 {
 if (irrecv.decode (& results))
 {
 irrecv.resume ();
 Serial.println (results.value, HEX);
 if (results.value == IRstop)
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);

 break;
 }
 }
 results.value = 0;
 advance (1); / / normal forward
 Serial.print ("Advance"); / / display direction (forward)
 Serial.print ("");
 }
 if (directionn == 2) / / If directionn (direction) = 2 (reverse)
 {
 if (irrecv.decode (& results))
 {
 irrecv.resume ();
 Serial.println (results.value, HEX);
 if (results.value == IRstop)
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 break;
 }
 }
 results.value = 0;
 back (8); / / reverse (car)
 turnL (3); / / move slightly to the left (to prevent stuck in dead alley)
 Serial.print ("Reverse"); / / display direction (backwards)
 }
 if (directionn == 6) / / If directionn (direction) = 6 (right turn)
 {
 if (irrecv.decode (& results))
 {
 irrecv.resume ();
 Serial.println (results.value, HEX);
 if (results.value == IRstop)
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 break;
 }
 }
 results.value = 0;
 back (1);
 turnR (6); / / turn right
 Serial.print ("Right"); / / display direction (turn left)
 }
 if (directionn == 4) / / If directionn (direction) = 4 (turn left)
 {
 if (irrecv.decode (& results))
 {
 irrecv.resume ();
 Serial.println (results.value, HEX);

 if (results.value == IRstop)
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 break;
 }
 }
 results.value = 0;
 back (1);
 turnL (6); / / turn left
 Serial.print ("Left"); / / display direction (turn right)
 }

 if (irrecv.decode (& results))
 {
 irrecv.resume ();
 Serial.println (results.value, HEX);
 if (results.value == IRstop)
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 break;
 }
 }
 }
 results.value = 0;
 }
 / *** ********************** /
 else
 {
 digitalWrite (MotorRight1, LOW);
 digitalWrite (MotorRight2, LOW);
 digitalWrite (MotorLeft1, LOW);
 digitalWrite (MotorLeft2, LOW);
 }

 irrecv.resume (); / / Continue to accept a set of infrared signals
 }
 }

 void performCommand () {
 if (Serial.available ()) {
 val = Serial.read ();
 }
 if (val == 'f') {/ / Forward
 advance (10);
 } Else if (val == 'z') {/ / Stop Forward
 stopp (10);
 } Else if (val == 'b') {/ / Backward

 back (10);
 } Else if (val == 'y') {/ / Stop Backward
 back (10);
 } else if (val == 'l') {/ / Right
 turnR (10);
 } Else if (val == 'r') {/ / Left
 turnL (10);
 } Else if (val == 'v') {/ / Stop Turn
 stopp (10);
 } Else if (val == 's') {/ / Stop
 stopp (10);
 }

 }

 Trademark Notice:

 Robotale and graphics Easy Interactive Technology Co., Ltd. is a branch registered trademark.
Based on the continuous improvement and upgrading of products, the company changed at any
time and where the information or products mentioned without notice. Without our prior
written consent or authorization, can not arbitrarily theft, copying, publishing partial description
of the product or the entire contents.

 Disclaimer:

 Users do not use this product for any application (such as experimental, contests, secondary
development), users at their own risk. Company for direct, indirect or consequential damage
arising from the use of this product (including loss of personal safety, profit loss of credibility, etc.)
assumes no responsibility for children under 14 years old must be conducted using the product
accompanied by an adult associated experiment.

 Errata Description:

 To be able to convey the right to use the product information, we spend a lot of time and effort
on this manual, you want users to be able to carefully read the contents, but inevitably there are
omissions. If errors are found, welcome to contact us by e-mail jmddz925@126.com. To make
the manual more perfect, providing the latest and most detailed information, we will continue to
improve the content of the manual supplement.

